
you-win: API Reference

Importing

you-win exports the following names:

To import all these names so you can use them in your code, use the following

lines:

const uw = require('you-win') 
const {Phone, World, Sprite, Text, Polygon} = uw 

Assets

Before you can do anything, you need initialise you-win. You do this by calling

uw.begin(), which downloads all the files your game needs. We display a

progress bar while your files are downloading.

await uw.begin() 

The special await keyword is important here: it tells the computer not to carry

on with your program until everything has finished loading.

init

World

Sprite

Text

Polygon

Rect

Phone

Sound



You should call begin() exactly once.

Costumes

A costume is an image that controls how a Sprite looks.

You download them by calling loadCostume() with a name and URL, before

you call begin().

If you make a static folder in the same place as your game’s .js file, you can

put images inside it, and then use '/<filename>' to load them. For example, if

you put my-asteroid.png in the static folder:

uw.loadCostume('asteroid', '/my-asteroid.png') 
await uw.begin() 

You can also use assets from a Glitch project. Copy their URL into your

program:

uw.loadCostume('face', 'https://cdn.glitch.com/f213ed6a-d103-4816-
b60d-47c712a926e2%2Fcat_00.png') 
await uw.begin() 

⚠ Because of security restrictions, you can’t use just any image URL from

any website.

To use a costume later, give its name:

var s = new Sprite 
s.costume = 'asteroid'

If you load more than one costumes, you-win won’t wait until the first one

finishes downloading before downloading the next one. It speeds things up by

downloading them all at once (i.e. in parallel).

https://glitch.com/


uw.loadCostume('duck1', '/duck-frame1.png') 
uw.loadCostume('duck2', '/duck-frame2.png') 
await uw.begin() // waits for duck1 and duck2 to finish 
downloading

Emoji costumes

Emoji costumes are loaded by default. To use them, just set your Sprite’s

.costume attribute to an emoji string:

var s = new Sprite 

s.costume = ' '

The emoji costumes are sized 32x32 pixels. Most but not all emoji are included.

Emoji make great placeholder graphics for your game, or even final graphics if

you like the retro pixel-art theme.

You can also use emoji inside Text.

World

World sets up the screen, manages all the sprites, and emits events such as

taps and drags on the background.

Set up the world after calling begin() to load your assets.



// Load everything we need
await uw.begin() 
 
// Make the world
var world = new World 
world.title = '' 
world.background = 'white' 
 
// Now we can start making Sprites!

It has the following attributes:

World has the following methods:

Sprite

world.width / world.height

The size of the game’s visible area on the screen.

If you don’t provide a width or height when making your world, it will

default to using the size of the phone’s screen.

world.scrollX / world.scrollY

An offset applied to all of the objects on-screen.

You can change these in order to move around the virtual “camera” to show

different parts of the world, e.g. for writing a platformer.

But be aware, the X and Y positions of your sprites won’t change when you

scroll; so a sprite at (0, 0) will no longer be in the bottom-left corner of the

screen!

world.background

The background colour of the world. Uses HTML/CSS colours, such as red

or #007de0.

world.stop()



A Sprite is an image in the world that can be moved and rotated and so on.

To make your Sprite appear, you must set its costume.

uw.loadCostume('cat', 'https://cdn.glitch.com/f213ed6a-d103-4816-
b60d-47c712a926e2%2Fcat_00.png?1499126150626') 
await uw.begin() 
 
var world = new World 
 
var cat = new Sprite 
cat.costume = 'cat' 
 
var bigCat = new Sprite 
bigCat.costume = 'cat' 
bigCat.scale = 2 // twice as big

Sprites have quite a few attributes which you can change. You can also set their

initial values when you make the sprite.

sprite.posX / sprite.posY

The X and Y co-ordinates of the center of the sprite, starting from the

bottom-left corner of the screen.

sprite.angle = 0

The rotation of the sprite, going clockwise.

 

sprite.scale = 1.0



The scale factor of the sprite. 1.0 means 100%; 2.0 is twice the size; 0.5 is

half the size.

sprite.flipped = false

Either true or false.

Whether to flip the sprite’s costume, so that it faces the other way.

Defaults to `false.

sprite.opacity = 1.0

Controls the sprite’s opacity aka. alpha aka. transparency aka. “ghost”

effect.

A value of 1.0 means the sprite is fully opaque; 0.0 means the sprite is

fully see-through.

If you want to remove the sprite entirely and permanently, use destroy().

sprite.costume = 'poop'

The image to use for the sprite, in case you want to change it later. For

example, if you want to cycle between several images in order to “animate”

the sprite”.

You can also give an emoji here, to get one of the built-in emoji costumes

(assuming you-win supports that emoji).

sprite.left / sprite.right / sprite.top / sprite.bottom

The co-ordinates of the edges of the bounding box of the sprite. The

bounding box is an axis-aligned box enclosing the whole sprite.

TODO: diagram

These can be useful for getting or changing the position of the edge of a

sprite. They tend to be more useful for non-rotated sprites.

Important: you usually need to assign these last. If you set the the

position of an edge, and then for example change the scale, the edge

won’t line up anymore! So make sure you set edge positions after

setting the other attributes.



Sprites have some useful functions attached to them.

sprite.raise()

Bring the sprite to the front, so that it is above all the other sprites.

sprite.lower()

Send the sprite to the back, below all the other sprites.

sprite.getTouching()

Returns a list of sprites which are overlapping this one.

Useful for detecting collisions!

for (var other of player.getTouching()) { 
    if (other.isBullet) { 
        // lose some health 
    } 
} 

sprite.getTouchingFast()

The same as getTouching, but avoids the accurate-but-slow Scratch-like

pixel-perfect collision detection, which compares the images of the two

sprites pixel-by-pixel.

sprite.isTouching(otherSprite)

Returns true if the two sprites are overlapping; false otherwise.

sprite.isTouchingFast(otherSprite)

The same as isTouching, but avoids the accurate-but-slow Scratch-like

pixel-perfect collision detection, which compares the images of the two

sprites pixel-by-pixel.

sprite.touchesPoint(x, y)

Returns true if the point overlaps the sprite; false otherwise.

You probably won’t need this, but it can be useful if you’re doing

complicated things involving drag events.



Sprite::forever

forever is really useful function: it lets you do something on every “frame” or

“tick” of your game. Usually ticks happen 60 times a second (60 FPS).

Write a forever block like so:

sprite.forever(() => { 
    // do stuff 
}) 

Any code after the forever loop isn’t affected:

sprite.forever(() => { 
    // This code runs forever. 
}) 
 
// This code runs once.
// Carry on setting up the game:
var otherSprite = new Sprite 

When the Sprite is destroyed, the forever loop will stop.

sprite.isTouchingEdge()

Returns true if the sprite is near to the edge; false otherwise.

sprite.isOnScreen()

Returns false if the sprite is completely off the screen; true otherwise.

This takes into account scrolling.

sprite.destroy()

Remove the sprite from the screen. Afterwards, the sprite is “dead” and

you can’t use it anymore.

If you just want to hide the sprite for a moment, set its opacity to zero.



If you want to stop a forever loop without destroying the Sprite (so that it

doesn’t run forever!), you can return false:

player.forever(() => { 
    if (player.isTouching(floor)) { // the floor is lava 
        // game over! 
        return false // stop this loop 
    } 
    // otherwise, move the player... 
}) 

Text

A Text object is like a Sprite, but instead of a costume, it’s used to display text.

var label = new Text 
label.text = 'SCORE: ' + 100

The text has a retro aesthetic. It also supports emoji (using the same emoji set

as Sprites can use). Which means that this:

var snowy = new Text 

snowy.text = ' '

…is quite similar to this:

var snowy = new Sprite 

snowy.costume = ' '

Text objects have all the same attributes as a Sprite–but instead of a costume,

they have the following:

obj.text

The text to display.

obj.fill



Polygon

A Polygon is like a Sprite, but has a shape instead of a costume. This shape is

defined using a list of points. Examples include making a filled rectangle, a

triangle with a fill and an outline, and thick lines.

Here’s an example Polygon:

var p = new Polygon 
p.points = [[0, 0], [0, 32], [32, 32], [32, 0]] 
p.fill = '#007de0' 
p.outline = 'black' 
p.thickness = 2

Polygons have all the same attributes as a Sprite–but instead of a costume,

they have the following:

The color of the text, e.g. text.fill = '#007de0'

polygon.points

A list of points. Each point is a 2-element list with the X and Y coordinates

(relative to the polygon’s center), like so:

p.points = [[0, 0], [-16, 20], [16, 20]] 

polygon.fill

The color painted inside the shape, e.g. polygon.fill = '#007de0'.

Leave out this setting, or set it to null, for no fill (just an outline).

polygon.outline

The outline color, e.g. polygon.outline = 'black'.



Rect

A Rect is a special sort of Polygon which, unsurprisingly, is shaped like a

rectangle.

Instead of a costume, Rects have the following:

Don’t forget you will need to use new Rect and not new Polygon

Touch Events

An event tells you that something has happened. Both Worlds and Sprites will

emit events when they are tapped or dragged.

Leave out this setting, or set it to null, for no outline. You must specify

either a fill or an outline (or both).

polygon.thickness

How thick to draw the outline (in pixels). Defaults to 2.

polygon.closed

Whether the last point should be joined to the first one, to make a closed

shape.

Defaults to true for filled polygons. TODO: saner default handling.

rect.width / rect.height

The dimensions of the rectangle.

rect.fill / rect.outline / rect.thickness

The fill color, outline color, and width of the outline.

See Polygon for more details.



If a tap overlaps more than one sprite (because the sprites are overlapping),

then the sprites are told about the events in order. The front-most one sees the

event first.

If a sprite wants to handle an event, it should return true. From then on, no

other sprites (nor the world!) will see the event.

There are a few kinds of event:

If you’re testing your game on a computer, mouse clicks and drags will work to

simulate touches – but remember that unlike fingers, a mouse pointer can only

be in one place at a time!

Detecting taps

world.onTap(e => { ... }) / sprite.onTap(e => { ... })

A tap event happens when a finger is pressed against the screen and let go

without moving.

The event object e has the following attributes:

world.onDrag(e => { ... }) / sprite.onDrag(e => { ... })

The event object e has the following attributes:

If the Sprite doesn’t want to hear about the event anymore, it can return

false.

world.onDrop(e => { ... }) / sprite.onDrop(e => { ... })

e.fingerX / e.fingerY: the coordinates of the tap.

e.startX / e.startY: the coordinate the drag started from.

e.deltaX / e.deltaY: the amount the finger has moved since the last

drag event.

e.fingerX / e.fingerY: the current coordinates of the drag.



world.onTap(e => { 
    // make a ball where you clicked 
    var ball = new Sprite 
    ball.costume = 'beachball' 
    ball.posX = e.fingerX 
    ball.posY = e.fingerY 
 
    ball.onTap(e => { 
        // flip 
        ball.flipped = !ball.flipped 
 
        // handle the event 
        // - otherwise another ball will get spawned! 
        return true 
    }) 
}) 

Dragging sprites around

var ball = new Sprite 
ball.costume = 'beachball' 
ball.onDrag(e => { 
    // move when dragged 
    ball.posX += e.deltaX 
    ball.posY += e.deltaY 
    return true 
}) 

Touches list

Detecting fingers held down

Sometimes you don’t want to listen for events: you just want to know where

fingers are touching the screen, right now. To do this, you can use

getFingers().

world.getFingers()



Phone

Phone provides access to sensors on a smartphone, such as the accelerometer.

You can use this to control your game depending on how the phone is held; for

example tilting to steer in a racing game.

You need to make a Phone object before you can access the readings:

var phone = new Phone 

It has the following attributes which you can get:

Sound

To use sounds, make sure to import {Sound} from 'you-win'.

Returns an Array containing a list of each finger currently touching the

screen.

You can use a for...of loop to go through each finger in turn:

for (let e of world.getFingers()) { 
    if (e.fingerX < world.width / 2) { 
        // touching the left side of the screen 
    } else if (e.fingerX > world.width/ 2) { 
        // touching the right side of the screen 
    } 
} 

Each finger is an event object, just like the e argument passed to onTap or

onDrag.

phone.zAngle: the angle of the phone’s screen in relation to the ground.

An angle of 0 means the phone is held upright. Tilt the phone to see it

change.



To load a sound , use loadSound. See Assets for details on the static/ folder

and where to put your sound files.

uw.loadSound('moo', '/moo.wav') 
await uw.begin() 

Before you can play your sound, you must create a Sound object.

var mooNoise = new Sound('moo') 

Finally, you can play your sound at the appropriate time.

mooNoise.play() 

Maths

Some built-in maths utilities.

Some trigonometric functions. These work in degrees, unlike the ones built-in

to JavaScript which use radians.

uw.range([start], end, [step])

Return a list of numbers starting at start (default 0), and ending before

end. Behaves identically to Python’s range().

The optional step argument (default 1) is how much to move between

each item.

uw.range(5) // => [0, 1, 2, 3, 4] 
uw.range(5, 10) // => [5, 6, 7, 8, 9] 
uw.range(10, 20, 2) // => [10, 12, 14, 16, 18] 
uw.range(0, -5, -1) // => [0, -1, -2, -3, -4]

uw.dist(dx, dy)

The distance between (0, 0) and (dx, dy), calculated using Pythagoras’

Theorem.



Random

Some built-in ways of getting random things are included.

uw.sin(deg)

uw.cos(deg)

uw.atan2(x, y)

uw.randomInt(from, to)

Return a random integer (whole number) between from and to, inclusive.

uw.randomInt(1, 3) // => 2 
uw.randomInt(1, 3) // => 1 
uw.randomInt(1, 3) // => 3

uw.randomChoice(array)

Return a randomly-selected item of an array.

uw.randomChoice([' ', ' ', ' ']) // => ' '


