
Cloning

This sheet explains how to create lots of copies of a sprite, without copy-

pasting code. For example, making a bullet every time you tap, or making a new

enemy every second.

Functions

We can create more than one copy of a sprite by copying its code. But we don’t

want to copy/paste the code every time we make a sprite!

We can write a function to make this easier. (This is just like a custom block in

Scratch.) A function lets you give a name to a piece of code. When we want to

run that code, we can refer to it by name, rather than copy/pasting the code

again.

A function looks something like this. You can call it whatever you like, it doesn’t

have to be makeCow.

function makeCow() {
 ...
}

We then need to write the inside of our function, so our program knows how to

make this sort of sprite. Let’s start writing our function:

function makeCow() {
 var cow = new Sprite

 cow.costume = ' '
 ...
}

Let’s make one copy of our sprite, by “calling” our function. Add this at the end

of your program, after the last } of our function.

makeCow()

The brackets are important – they tell JavaScript that this is a function we want

to run.

 Save, and check that the new sprite appears.

Copying a sprite

Now we can easily create 100 copies of our sprite. This needs to go at the

bottom of your program below the function, after the final } for the function.

for (let num of uw.range(100)) {
 makeCow()
}

 Make sure there are 100 sprites created. You’ll need to randomize their

positions (or something) or they’ll all be overlapping each other in the middle!

Delaying the copies

Or, if we wanted to make a new copy every 3 seconds, we could use

setInterval. This allows us to give a function that we want to execute each

time and the amount of time to wait in between.

setInterval(function() {
 makeCow()
}, 3000)

Note that the amount of time is in milliseconds (3000ms = 3seconds).

If you wanted to only wait once, rather than multiple times, you can use

setTimeout in exactly the same way.

For more information on setTimeout and setInterval, including how to stop a

setInterval from executing from running using clearInterval, have a look

here.

On tap

We can use our new function to create a sprite when you tap the screen.

world.onTap(e => {
 makeCow()
})

Moving clones

It’s important to note that the cow variable can only be used inside our

makeCow function. Variables in a function can only be used in that function.

This means we can make variables specific to a clone by putting them inside the

function. For example, we might decide to give our sprites gravity.

We’ll start them off with a random amount of upward force. Put this at the top

of your function.

function makeCow() {
 var speedY = uw.randomInt(0, 10)
 ...

Now let’s make them fall due to gravity. Add this forever block at the bottom

of your function, just before the final }.

 cow.forever(() => {
 cow.posY += speedY
 speedY -= 0.5
 })

https://www.w3schools.com/js/js_timing.asp
file:///home/tim/code/lw/you-win/docs/05-events#taps

Your final function should look something like this:

function makeCow() {
 var speedY = uw.randomInt(0, 10)

 var cow = new Sprite

 cow.costume = ' '

 cow.forever(() => {
 cow.posY += speedY
 speedY -= 0.5
 })
}

 Save, and check the sprites fall down independently.

Each sprite made by our function gets its own speedY.

Destroying clones

If we keep creating sprites, but never destroy them, then the number of sprites

in our world will grow and eventually our game will get really slow! We can fix

that by destroying sprites once they’re no longer needed.

For example, we can destroy sprites when they go off-screen. Add this inside

your sprite’s forever block.

 if (!cow.isOnScreen()) {
 cow.destroy()
 }

Destroying a sprite removes it from the screen permanently. This also stops any

forever loops attached to it.

