
Intro #2: Animation

Animation

So far, we’ve only set up static scenes. We’ve learnt how to position different

kinds of objects on the screen, and change how they look; but we haven’t

moved them or changed them after initialisation.

Animation means to give an appearance of movement. We do this by changing

values over time.

 Save, and check your Sprite appears!

Forever

We need a way to react to time passing. We do this by using forever to run

code on every frame.

An app draws a new frame on the screen roughly 60 times a second (or 60 FPS,

frames per second).

First, let’s start a new project.

You can do this by saving your last file with a different name (game1.js

would be sensible), then reopen game.js. If you do that you’ll need to

delete everything after await uw.begin(), except for the first three lines

that create the world and give it a title and background.

Then in this new file, make a Sprite with your favourite emoji. (You can

search for emojis here: once you’ve found the one you want, click on it and

it will be copied to your clipboard.)

var face = new Sprite

face.costume = ' '

http://emoji.tjvr.org/

We can use forever to make our sprite spin!

The forever blocks are fiddly to type; sorry about that. Make sure you get the

brackets exactly right!

In JavaScript, n += 1 is shorthand for n = n + 1. You can read it as “change

by”.

We’re increasing the angle of the sprite a little bit on every frame, so our sprite

will slowly rotate clockwise.

 Save, and you should see your Sprite start to spin!

 Make sure you can get your Sprite to spin the other way.

Now we know the basics of animation, lets try some simple movement.

Add a forever block, right after you create your Sprite.

face.forever(() => {

})

Rotate your Sprite a small amount every frame.

 face.angle += 1

Add this inside the forever block.

Challenge: make the sprite rotate anticlockwise.

Instead of rotating, make the Sprite move right.

 face.angle += 1

Delete this line.

 face.posX += 2

 Save, and the Sprite should move to the right instead of rotating.

The numbers inside the forever are how much to move on each frame, so they

control how fast the animation happens.

 Make sure you can get your Sprite to move faster.

Note that multiplying the scale by the fraction 1.05 is the same as increasing it

by 5%.

 See if you can get your Sprite to get bigger.

Events

Let’s have our face shoot out a projectile toward our finger when we tap.

 Make sure your sprite stops moving.

Make your sprite move a bit faster.

Challenge: experiment with animating other properties, like gradually

increasing scale:

 face.scale *= 1.05

Delete (or comment out) the forever block for now – we won’t need it

until later.

face.forever(() => {
 face.angle += ...
 face.posX += ...
 face.scale += ...
})

Use on('tap') to detect when the screen is tapped.

The code inside the on(... block runs whenever the screen is tapped. So

whenever you tap (or click) the screen, the message “don’t touch this” should

appear.

 Save, and check that the message appears when you tap the screen.

That gets boring quickly, so let’s make a projectile.

 Save, and check that a bullet appears wherever you tap.

What’s going on here? e is an event object, telling us the details of the tap

event. The e.fingerX and e.fingerY attributes tell us the X & Y coordinates

where the tap happened.

Now let’s try moving our projectile!

world.onTap(e => {
 alert("dont touch this")
})

Make sure you get the brackets right!

When the screen is tapped, create a bullet under your finger.

 alert("dont touch this")

Delete this.

 var bullet = new Sprite

 bullet.costume = ' '
 bullet.posX = e.fingerX
 bullet.posY = e.fingerY

Add this inside the world.onTap block.

Add a forever block to move the Sprite we created after the tap.

Notice that the forever block has to be inside the world.onTap block. Just as

we can’t use a name like cow before it’s been created, we can’t use the name

bullet outside the block that it was created inside. This phenomenon is called

“scope”.

 Save, and check that a bullet appears and starts moving, wherever you tap.

Moving at an angle

Sometimes we want to move things at an angle – and to do this, we need

trigonometry!

It’d be really neat if our bullets started at the face, and travelled outward

toward the point where we tapped. Then it would feel more like a “cannon”

sort-of game.

 Make sure the bullets always start from the face.

To move our bullets, we only need to know two things from trigonometry:

 bullet.forever(() => {
 bullet.posX += 3
 bullet.posY += 3
 })

Make sure this is inside the world.onTap block still.

Challenge: make the bullets start at the same position as the face.

Make sure you do this! If you don’t, then the bullets won’t move in the right

direction later :-)

You can use .posX += uw.sin(angle) and .posY += uw.cos(angle) to

move a sprite at an angle.

You can use angle = uw.atan2(dx, dy) to work out the angle you need to

move something in a direction.

1

2

Currently, our bullets all go at 45°, which is dull. Let’s fire them out at a random

angle.

 Check the bullets are created pointing in a random direction.

 Check the bullets move in the same direction as they’re facing.

By multiplying sin and cos by 4, we increase the speed of movement.

So we’ve done the first part – moving the bullets in a direction.

Now to work out the correct angle! We need to use atan2 for this. This is a

special version of inverse tan() which takes two numbers – a difference in X and

a difference in Y – and returns the correct angle.

We’ll call the difference in X dx, and the difference in Y will be dy.

Challenge: create the bullets with a random initial direction.

Hint: you want to set their angle to a random number between 1 and 360.

Now move them at that angle by replacing your forever block.

bullet.posX += 3
bullet.posY += 3

We don’t want this anymore.

bullet.posX += 4 * uw.sin(bullet.angle)
bullet.posY += 4 * uw.cos(bullet.angle)

Type this instead, inside the bullet.forever block.

Delete your code for setting the bullet to a random angle.

bullet.angle = ...

Delete your existing line of code for setting bullet.angle.

Work out the difference in X and Y between the face and your finger.

 Check the bullets move toward your mouse.

Congrats! We’ve just made a… face-cannon… thing.

Conditions

Animation is all very well, and we’ve learnt how to react to events. But how can

we react to other things changing?

A condition returns a Boolean value: either true or false. They look like this:

Here are some examples. These are all true:

var dx = e.fingerX - face.posX
var dy = e.fingerY - face.posY

Use atan2 to get the correct angle.

bullet.angle = uw.atan2(dx, dy)

x === y means x is equal to y

x !== y means x is not equal to y

x < y means x is less than y

x <= y means x is less than or equal to y

!p means not – true if p is false, and vice-versa

p && q means and – true only if both p and q are true

p || q means or – true if either of p or q is true

1

2

3

4

5

6

7

1 !== 2

42 === 42

"moo" === "moo"

10 < 42

1

2

3

4

Finally, there’s a really important condition built-in to you-win, called

.isTouching(otherSprite). More about that later!

Let’s see what we can do with conditions.

This time, we’re giving its speed a name: xVel. We’re doing this so we can

change it later.

Just as you can give a name to Sprites, you can give a number a name to

“remember” it for later. You can change it later, too.

Currently, our face moves to the right (increasing X).

We do this by comparing his right edge to the width of the world. If his right

edge is greater than the width of the world, then he’s gone off the right-hand

side of the screen; so we set his velocity negative, so he starts moving left

instead.

!(false)

true && true

false || true

5

6

7

First, make our cannon-face move.

var xVel = 2

face.forever(() => {
 face.posX += xVel
})

Add this at the bottom of your program, just before the end }).

Make it bounce off the right edge.

 if (world.width < face.right) {
 xVel = -2
 }

Make sure the if block is inside the face.forever block.

Fin

Excellent work! You’ve learnt how to:

What next?

If you want something else to try, here are some extensions to try! Why not:

Flip the costume, for good measure…

 face.flipped = true

Add this inside the if block.

Challenge: make it bounce off the left edge too.

You’ll need to add a second if block inside the face.forever.

Hint: the left-hand side of the world is where X = 0…

Check that the bullets still come from the face, and head toward your

finger!

Do something over time with forever

Change attributes using +=

Move things over time (animation!)

React to the orientation of the phone

How to detect taps using .onTap

How to move things at an angle

Using if for conditions

destroy-ing Sprites when you’re finished with them

Carry on moving the bullets at an angle, but have their picture stay upright.

Hint: you’ll need a var statement for this–but make sure you get it in the right

place!

Hint #2: the relevant phenomenon here is called “scope”, and it’s hard to

understand, so ask someone to explain it to you!

Generally have a play around with the thing you just made, or more

generally, everything you’ve learnt in chapters 1 and 2.

Continue on to the next thing once you’re ready!

file:///home/tim/code/lw/you-win/docs/Jump

